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Simulations of heat transfer in UO2 at very high temperatures incorporating the effects of phase transi-
tions are being conducted to help support the design and analysis of experimental work being conducted
as part of nuclear safety research. This work includes the interpretation of the behaviour of nuclear fuel
under conditions where centerline melting may occur. Models based on the Stefan formulation and Phase
Field approach are derived from fundamental principles and implemented using recently published
material properties. Both simulations compare well with laser flash experiments in recently published
literature. The Phase Field model is recommended for further development due to its versatility in han-
dling heat sources and robustness in simulating the evolution of the solid–liquid interface. These points
are demonstrated with an example simulation of centerline melting resultant from fission heating for fuel
performance analysis.
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1. Introduction

Under upset or very high power conditions, it is possible that lo-
cal fuel melting may result. A number of mechanistic codes have
been developed for reactor safety analysis to predict the thermal
mechanical behaviour of nuclear fuel elements under upset or se-
vere reactor accident conditions, where fuel melting phenomena
can occur [1–5]. In addition, even under normal operating condi-
tions, fuel centerline melting may result with defective fuel opera-
tion at high linear power ratings, where the thermal performance
of the element may be degraded with the possibility of fuel oxida-
tion, which leads to a reduced thermal conductivity in the urania
and a lower incipient melting temperature in the hyperstoichio-
metric fuel [6–8].

Recent experiments have been performed to better understand
molten fuel phenomena, typically involving laser flash techniques
[9] or a furnace as performed by Latta and Fryxell [10], i.e. special-
ized equipment is required to heat fuel samples to the melting
temperature of 3147 K for unoxidized fuel. These experiments
therefore provide a methodology to study the thermal properties
of uranium dioxide fuel and hyperstoichiometric fuel at high tem-
perature in both the solid and liquid state. In order to determine
such properties, sophisticated models coupling the heat and mass
transport are typically needed [11]. There is also a requirement to
generalize these models so that they can be used in fuel perfor-
mance and safety codes. For example, in these latter applications,
008 Published by Elsevier B.V. All
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a non-idealized geometry may be present where there is not just
surface heating but rather a volumetric source of heat due to decay,
fission or chemical processes in fuel elements under various
operating conditions and accident scenarios. The introduction of
a phase transformation adds significant complexity to the fuel
behaviour models due to sharply changing material properties. In
particular, as a simplification to incorporate such phenomena,
the thermal effects of a phase change have been previously mod-
eled by considering rapid changes in the enthalpy or heat capacity
over a given temperature interval [12]. A more fundamental treat-
ment, however, is desirable in order to assess such approximate
approaches for treating molten fuel behaviour, which is the focus
of the current modelling effort.

In working towards simulating the melting of an operational
fuel element, two modelling techniques are developed. The Stefan
formulation is essentially the law of conservation of energy as it
applies to a moving phase boundary. This approach is widely used
for modelling problems with changing phases [13,14] and has pre-
viously been applied by Atrazhev and Brykin [11] to describe the
melting of nuclear fuel by laser flash experiments. The Phase Field
technique is commonly used to simulate solidification microstruc-
ture [15] but offers many attributes desirable to simulations of
melting on the scale of interest in this work. In contrast with the
Stefan formulation, the Phase Field model does not solve for the
position and rate of movement of the phase change front but rather
can deduce it from the solution. Boettinger et al. [16] presents an
excellent review of this methodology but derives an isothermal
formulation to which a heat flow equation is appended. Bi and Se-
kerka [17] derive a general formulation for the non-isothermal case
rights reserved.
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Table 1
Nomenclature

Symbol Definition

a Radius of a fuel pellet
A Area
Ceff Reduced fraction of effusion rate due to buffer gas pressure
Cp Heat capacity
d Height of sapphire window above sample surface
f Helmholtz energy density
fh Heterogeneous nucleation factor
g Gibbs energy density
h Enthalpy density
Io Kinetic parameter for nucleation
I0,1 Modified Bessel functions
k Thermal conductivity
kB Boltzmann’s constant
kHe Thermal conductivity of helium
Ku Excess energy of interface
Ks Excess entropy of interface
M Molar mass of vapour species
Mu Mobility of internal energy
Mu Kinetic parameter of phase change
n Number of atoms
n̂ Normal direction
p Smoothing function
Plin Linear power
Pmax Maximum power incident on the sample
Ppulse Observed laser pulse shape
Pvap Vapour pressure above UO2

~q Fourier heat flux
qc Conductive heat flux
qlaser Incident laser power on sample
qr Radiative heat flux
qv Vapourization heat flux
_Q Volumetric heat source

s Entropy density
S Entropy
Rfus Rate of fusion
t Time
T Temperature
Tm Melting temperature
T1 Ambient temperature
u Internal energy density
V Volume
W Height of potential barrier in Ku(u)
~x Spatial coordinates
X
!

Reference coordinates
d Interface thickness parameter
Dgfus Gibbs energy of fusion per unit volume
DGfus Gibbs energy of fusion
DGn Gibbs energy of nucleus formation
DGo

n Critical energy for nucleus formation
DHfus Enthalpy of fusion
DHvap Enthalpy of vapourization
e Emissivity
eu Coefficient of gradient in u
j Inverse neutron diffusion length
q Density
r Surface energy between solid and liquid
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which forms the basis of the derivation presented herein. To our
knowledge, the Phase Field model has not been applied to the
problem of nuclear fuel melting.

This work therefore details the theoretical development of both
models and assesses their suitability for nuclear fuel analysis. The
models are specifically compared to results from laser flash exper-
iments that were previously conducted at the Institute for Trans-
uranium elements (ITU). The application of the Phase Field model
to fuel centerline melting in an operating fuel element is also
demonstrated.

2. Modelling techniques

The development of the Stefan and Phase Field models to de-
scribe heat and mass transfer in liquid and solid uranium dioxide
fuel is described in Sections 2.1 and 2.2, respectively.

2.1. The Stefan formulation

The Stefan formulation is based on the conservation of energy in
the presence of a moving melting/solidifying front which is explic-
itly tracked. Local equilibrium is assumed on either side of this
boundary and undercooling/superheating effects are ignored. This
conception is considered a ‘sharp interface’ model since the phase
change is assumed to be localized to a stable, well defined melting
front without a two phase ‘mushy region’.

The basic schematic of the Stefan formulation, defining the nor-
mal direction n̂ in accordance with the convention in [18], is shown
in Fig. 1. All symbols are listed for reference in the nomenclature
section in Table 1.

The heat transport equation for the temperature T must be sat-
isfied in both the liquid and solid phases independently:

q � Cp
oT
ot
¼ �~r � q!þ _Q ð1Þ

where q is the density, Cp is the heat capacity, _Q is volumetric heat
generation and q! is the fourier heat flux defined as

q!¼ �kr!T ð2Þ

in which k is the thermal conductivity.
The temperature profile in the sample is continuous across the

boundary and equal to the melting temperature. The heat flux is
discontinuous across the moving phase change front as a conse-
quence of the storage of enthalpy of fusion. Indicating solid and li-
quid fluxes by the subscripts S and L, the conservation equation
may be written as

~qL � n̂�~qS � n̂ ¼ qDHfusRfus ð3Þ

where Rfus is the rate of fusion, and DHfus is the enthalpy of fusion.
Fig. 1. Stefan model schematic with liquid and solid phases separated by a sharp
interface. This figure defines the normal vector and the rate of fusion Rfus.

rSB Stefan Boltzmann constant
u Phase field variable
_un Rate of phase change due to nucleation
~W Velocity of the mesh with respect to the material
0 Derivative with respect to u
� Derivative with respect to time
It is important to note that the rate of the phase front move-
ment is independent of any motion of the liquid phase. The rate
of front movement is the rate of melting for positive values and
conversely the rate of solidification for negative values. The Stefan
problem is then described completely by Eqs. (1)–(3).

The moving phase front is represented mathematically as a
boundary between the solid and liquid phase that moves with
time. One technique to model a moving boundary problem is to
perform a coordinate transformation from the moving ‘spatial’ do-
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main (such as would be observed) to a stationary ‘reference’ do-
main upon which the equations may be solved. Such a transforma-
tion may be accomplished via the Arbitrary Lagrange Eulerian
method [19] which introduces a new set of unknown variables,
i.e.,~x which correspond to the observed, spatial coordinate system.
These variables, in addition to the unknowns of the problem, are
solved on the stationary, reference domain with coordinates X

!
.

The solution,~xð~XÞ allows for the transformation of the problem un-
knowns and their derivatives between the reference and spatial
domains as illustrated in Fig. 2. Using temperature as an example,
the transformation of spatial and temporal derivatives are

r~xT ¼ r~XT � o
~X

o~x
ð4Þ

DT
Dt
¼ oT

ot
þr~xT � ~W ð5Þ

where subscripts denote the coordinate system for the given deriv-
ative, D

Dt represents the total (material) time derivative and ~W ¼ o x!
ot

is the velocity of the mesh with respect to the material. The tempo-
ral derivative includes a convective term to account for the mesh
movement. The term o~X

o~x in Eq. (4) is the inverse Jacobian of this
transformation. In the one dimensional case, this term takes the
simple form:

o~x

o~X
¼ ox

oX
ð6Þ

o~X
o~x
¼ ox

oX

�1

ð7Þ

Mesh displacement or velocity is determined for all points on
the reference mesh by the solution of a smoothing equation such
as r2

~X
~W ¼ 0 subject to the boundary conditions. In the current

model, outer boundaries are stationary and the internal boundary
is fixed to the melting front so that the mesh follows the move-
ment of the interface.

2.2. Phase Field model

The Phase Field model adds a scalar variable u, named the phase
field variable, to the problem domain and an associated partial dif-
ferential equation to govern it [20]. This variable is an abstract
parameterization of the extent to which a region of material may
be considered solid or liquid. It can be interpreted as the local frac-
tional volume that is liquid, or proportional to the regularity of
atomic spacing [21]. It is not a conserved quantity. In this develop-
ment, u represents the phase change between solid and liquid for
clarity, but it can represent any phase transformation in general.

In this analysis, the value of u varies continuously in the range
[0,1] representing solid and liquid, respectively. For u 6¼ 0;1, a two
Reference domain

Spatial domain 

Internal boundary 
T = T(X) 
x = x(X)  

T = T(x) 

x

X

Fig. 2. An example coordinate transformation between the reference and spatial
domains in one dimension. The temperature T(X) and the transformed coordinates
x(X) are computed on the reference domain. They are combined in order to repr-
oduce the temperature on the moving, spatial domain: T(X) = T(x(X)�1).
phase region is present in which the material can be considered a
mix of solid and liquid forming a ‘diffuse’ interface in contrast to
the sharp interface used in other models such as the Stefan formu-
lation previously described [22]. This formulation is a very general
model which can be shown to reduce to the Stefan condition in the
sharp interface limit.

The theory of irreversible processes is employed to derive the
equations governing u and its relation to classical heat flux. This
theory is founded on the Laws of Thermodynamics [23], particu-
larly the Second Law: in an isolated process, the local entropy pro-
duction is positive [24]. As derived in the Appendix, the Phase Field
model requires the solution of the following set of partial differen-
tial equations for the temperature T in the generalized heat con-
duction equation and the phase change u, respectively:

qCp
oT
ot
¼ ~r � k~rT � ½p0ðuÞDHfusðTÞ þ K 0uðuÞ� �

ou
ot
þ _Q ð8Þ

ou
ot
¼ �Mu

1
T
½p0ðuÞ � DGfusðTÞ þ K 0uðuÞ� � e2

u
~r2u

� �
þ _un ð9Þ

Here (0) denotes differentiation with respect to u. The thermo-
dynamic functions DHfus and DGfus are the enthalpy and Gibbs en-
ergy of fusion, respectively, which are also used in phase
equilibrium packages such as CALPHAD or FACT. The term Mu is
a kinetic parameter for the rate of phase change and eu is the coef-
ficient of the gradient term in the entropy functional as described
in the Appendix. Material properties are expressed according to a
linear progression in u between solid and liquid values as shown
below for k using subscripts S and L to denote the solid and liquid
states, respectively:

kðT;uÞ ¼ ð1� pðuÞÞ � kSðTÞ þ pðuÞ � kLðTÞ ð10Þ

The function p(u) smoothes u and allows the enforcement of certain
requirements as outlined in the Appendix. The function Ku(u) de-
scribes the excess surface energy of the material on the boundary
between solid and liquid where u 6¼ 0;1. As in other work, these
parameters are taken to be [16]:

pðuÞ ¼ u3½6u2 � 15uþ 10� ð11Þ
KuðuÞ ¼Wu2½1� u�2 ð12Þ

where W is the height of the energy peak.
Additional Phase Field constants are given by

W ¼ 6r=d ð13Þ
e2
u ¼ 12rd=Tm ð14Þ

Mu ¼
k
5

Tm

d � DHfus

� �2

ð15Þ

where r is the surface energy between solid and liquid phases, d is a
user-chosen measure of the interface thickness and Tm is the melt-
ing temperature.

The term _un in Eq. (9) describes nucleation of one phase inside
another and is given by

_un ¼ exp �DGo
n

kBT

� �
�

Io
Sð1� uÞ if DGfus < 0
�Io

Lu if DGfus > 0

(
ð16Þ

where DGo
n is the critical energy for a nucleus, kB is Boltzmann’s con-

stant and the constants Io
S;L are related to nucleation kinetics.

The width of the diffuse interface can be envisioned as a balance
between the opposing energy effects described by W and eu. The
former increases the energy of material on the boundary, which
tends to make the interface sharp. The later increases the energy
associated a rapid change in u, which tends to make the interface
more diffuse [16]. Hence, these two parameters provide a means to
control the spatial extent of the interface region which has impli-
cations with computational resources as discussed below.
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The Phase Field model does not explicitly define the position of
the interface, but rather includes it indirectly. This technique
allows for complex interface shapes, volumetric heating and
undercooling/superheating effects that can pose difficulties in
other simulation techniques. Herein lies the power of the Phase
Field methodology.

3. Model implementation and validation

The current model is being benchmarked against experiments
conducted at the Institute for Transuranium Elements (ITU) in
Karlsruhe, Germany, in which measurements of the melting tran-
sition in UO2 are obtained [9,25]. This experimental work is used
to verify the development of the modelling techniques in this
analysis.

Briefly, in the ITU experiment, a prepared sample of UO2 is held
in a high pressure helium buffer gas to suppress the extent of UO3

vapourization. The sample is heated on one side with a combina-
tion of two lasers whose beams are homogenized by random mix-
ing over a long fiber optic cable. One laser is used at lower power to
slow and condition the cooling rate to prevent undercooling which
would complicate the modelling procedure. The other laser is used
at higher intensity to heat the surface of the sample and induce
melting. A sapphire window was placed 1 mm above the sample
to reduce convective currents. The surface temperature in the cen-
ter of the pellet is then recorded using optical pyrometers.

The proposed models require the solution of a set of highly non-
linear differential equations which were solved using the commer-
cial finite element software platform, Comsol Multiphysics version
3.3. Since the experiment provided a measurement of the surface
temperature at the center of the molten pool, this quantity is the
variable of interest for model validation.

Energy is assumed to be deposited uniformly on the surface of
the sample in accordance with the observed pulse profile, Ppulse(t),
where the maximum power, Pmax, is set empirically from the sim-
Table 2
Input material properties

Property Equation

Solid
Cp 52:1743þ 87:951Tk � 84:2411T2

k þ 31:542T3
k � 2

k 100
7:5408þ17:692Tkþ3:614T2

k
þ 6400T�5=2

k exp �16:35
Tk

� �
Pvap 10�31284/T + 7.616[29]

DHvap 514000a

e 0.836 + 4.321 � 10�6 (T � 3120)
q 10.5b

Liquid
Cp 0:25136þ 1328:8T�2

k

k 3.1c

Pvap 10(15.961�26974/T)T�2.76

e 1 � 0.16096 � exp (�3.7897 � 10�4 (T � 3120) � 3
DHvap 516382 � 22.946T
q 10.5

General properties
kHe 0:152 T

300

� �0:71[27]

Tm 3156[9]

DGfus
�26496 þ 621:3T � 84:58TlnðTÞ þ 0:0440T2 �
þ2:629 � 10�9T4 � 1:317 � 10�13T5 � 356955=T

DHfus 70000
r 0.06e

Material properties for u 6¼ 0;1 are linear interpolations between solid and liquid values
[30] unless otherwise noted.

a Calculated as the sum of the enthalpy of vapourization at the specified melting tem
b 95% theoretical density. As volume expansion is not simulated, no temperature dep
c The choice of this value is discussed in Sections 5.
d This expression is modified from Ref. [6] in order to set the melting point at 3156 K
e The surface energy between a liquid and solid phase is assume to be the difference
ulation results. In accordance with Kirchhoff’s radiation law [26],
the absorptivity is taken to be equal to the emissivity, e, yielding
the formula for incident energy flux, qlaser:

qlaser ¼ e � PmaxPpulseðtÞ ð17Þ

Heat is lost from the surface of the sample through conduction
into the buffer gas (qc) and radiative heat transfer (qr) as given by
the flux expressions:

qc ¼
kHe

d
ðT � T1Þ ð18Þ

qr ¼ erSBðT4 � T4
1Þ ð19Þ

where kHe is the thermal conductivity of Helium [27], d is the height
of the sapphire window, T1 is the ambient temperature and rSB is
the Stefan Boltzmann’s constant.

The high pressure buffer gas is assumed to suppress mass
vapourization of UO3 to inhibit a stoichiometry change in the sam-
ple. Thus vapourization is only included as a heat loss, qv, where a
Knudsen effusion formula is applied to account for this loss [28]:

qv ¼ DHvap � Ceff �
44:3ffiffiffiffiffi

M
p � Pvapffiffiffi

T
p

� �
ð20Þ

where DHvap is the molar enthalpy of vapourization, Pvap(T) is the
vapour pressure [29] and M is the molar mass of the vapour species.
In order to correct for the buffer gas pressure, this formula includes
a constant fraction Ceff, which is selected to reproduce the observed
temperature profile. This approximation has been shown to be suf-
ficiently accurate in other work [12]. The melting temperature is set
to the value reported in the experiment: 3156 K.

Material properties for this simulation are given in Table 2 and
are primarily taken from the Fink review in 2000 [30]. Although a
more recent review by Ronchi [31] is available, thermal properties
from the Fink review are chosen for consistency. The melting tem-
perature is inputted as 3156 K in order to coincide with the experi-
mental observations. The interface width d in Eqs. (13)–(15) is
Units

:6334T4
k � :71391T�2

k J/mol K

W/m K

MPa

J/mol

g/cm3

J/mol K
W/m K
MPa

.2718 � 10�7 (T � 3120)2)
J/mol
g/cm3

W/m K

K

1:404 � 10�5T3
[6]d J/mol

J/mol
J/m2

. For simplification, Tk = T/1000 and are both in K. Material properties are from Ref.

perature and the enthalpy of fusion and assumed to be constant.
endence is implemented.

.
in the free surface energies of each stated in [30].



Fig. 4. One dimensional Phase Field model showing temperature and u for
t = 57 ms.
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limited by the computational resources and set to 0.1 lm and 10 lm
for the one and two dimensional Phase Field model, respectively.
The nucleation rate constants, Io

L and Io
S in Eq. (16) are chosen

to prevent undercooling/superheating for this experiment.

4. Results

Fig. 3 shows the results of three simulations in comparison to
the experimental work. A one dimensional simulation with the
Stefan model assuming axial symmetry is compared to the Phase
Field model in one and two dimensions. As depicted in the figure,
the plot can be divided into four stages, where:

1. The sample is completely solid and being heated rapidly by the
combined laser pulses.

2. The surface temperature has passed the melting temperature.
There are now two phases present; a liquid phase near the sur-
face of the sample, and the bulk solid phase. The liquid phase
grows with time until a maximum temperature is reached.
After this point, the heating laser is turned off and the sample
cools rapidly until the free surface temperature reaches the
melting temperature again. Concurrently, the liquid region is
resolidifying against the underlying solid.

3. The free surface liquid temperature reaches the melting (freez-
ing) temperature and starts to solidify. Solidification now
advances from both the surface and the bulk into the liquid.
As the liquid solidifies, the latent heat is released, forming a
temperature plateau until all of the liquid is resolidified.

4. The liquid phase is now completely solidified and only one
phase remains. The temperature slowly becomes uniform over
the sample. A slight kink appears in the temperature profile
when the conditioning laser is turned off.

The Phase Field simulations are shown for a time of 57 ms
where the one dimensional model (taken along the axis of the sam-
ple) is shown in Fig. 4, and the two dimensional model (assuming
Fig. 3. Comparison of the Stefan formulation model, the one and two dimensional Phase
set to coincide with the results of the experiment for the purpose of comparison.
azimuthally symmetry) is show in Fig. 5 which shows the radial
extent of the molten pool.

5. Sensitivity analysis

The sensitivity of the models to the thermophysical material
properties was investigated with the Stefan formulation, which is
particularly sensitive to the rate of energy deposition on the sur-
face. This result is partially affected by the ablation of the material
being heated, which removes heat as the enthalpy of vapourization
(in addition to an attenuation of the laser beam intensity above the
sample surface).

Decreasing the interface thickness d, and so approaching the
sharp interface limit, did not yield an appreciable effect in the
one dimensional simulation. Increasing the value of the nucleation
constants Io

S;L above the value at which undercooling/superheating
was not observed also did not affect the results appreciably, but did
cause some instability in the convergence of the solution.
Field models and the experimental observation. The melting point for the models is



Fig. 5. Two dimensional Phase Field model showing enclosed molten material for
t = 57 ms.
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The current model does not include volume change due to ther-
mal expansion. Therefore the density was chosen to be a constant
in both phases in order to conserve mass. The choice of the initial
density reported in [25] was 10.5 g/cm3 (95% of the theoretical
density). The simulation result using this value was compared
against the solid and liquid densities at the melting point, 9.1 g/
Fig. 6. Comparison of the effects of different t
cm3 and 8.4 g/cm3, respectively, calculated using the thermal
expansion equation from [30], where no noticeable effect was ob-
served. The effect of thermal expansion will be considered in future
work.

The thermal conductivity of the liquid has a large uncertainty.
Fink recommends a value of 2.5 ± 1 W/m K whereas Sheindlin
et al. [12] recommends a value of 2.6 ± .35 W/m K. The effect of this
uncertainty is shown in Fig. 6, which shows that the main effect is
on the duration of the temperature plateau (which increases with a
an increasing thermal conductivity value). This result can be con-
ceptually explained where more energy is reaching the solid
through the liquid, for the same apparent surface temperature.
The results presented in Fig. 3 employ a value of 3.1 W/m K that
provides the best simulation of the observed thermogram within
the reported uncertainty. The inclusion of thermal expansion
may help further reconcile this value with that reported in the
literature.

6. Discussion

For the application of these models to the problem of fuel melt-
ing in operating fuel elements, a comparison of the abilities of the
Stefan and Phase Field models needs to be considered in terms of
the ease and stability of computational implementations and the
capability to include the relevant physical phenomena such as fis-
sion heating.

Numerically solving the system of differential equations re-
quires the definition of a mesh on the domain of interest. The res-
olution of this mesh is a major factor in determining the required
computational resources. In order to obtain accurate results, it is
important that the mesh be well resolved in regions of large phys-
ical property variations. For the melting/freezing case, the region
around the interface contains sharp gradients and discontinuities
in the physical properties. As the presented Stefan formulation
explicitly determines the position and speed of the interface, the
moving mesh can maintain high resolution mesh regions around
hermal conductivities in the liquid phase.
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the front. This implementation reduces the overall computational
requirements by allowing a coarser mesh to be used for the bulk
of the material while keeping fine resolution in the region of inter-
est. In contrast, since the Phase Field approach does not explicitly
track the boundary, the mesh must be adequately resolved over
the entire domain where the interface could be found. As discussed
in the Appendix, this requirement implies that the mesh resolution
should be approximately one order of magnitude less than the
specified interface width. This substantially increases the compu-
tational requirements of this model and makes it impractical for
large and especially multi-dimensional domains.

While the material properties in the Phase Field model vary
smoothly and continuously from solid to liquid, the Stefan formu-
lation requires individually defined regions for solid and liquid
phases. This requirement is accomplished in this work by solving
the model in a series of stages in accordance to those outlined in
Fig. 3. Changing between stages presents a challenge and intro-
duces instability into the overall model. Knowledge is also required
a priori of the sequence of stages, or a more sophisticated code.

Unfortunately, the Stefan model cannot easily accommodate
volumetric heating, as occurs by fission in operational fuel ele-
ments. This limitation is due to the assumption of a stable, sharp
interface, and the derivation of the rate of interface movement de-
scribed in Eq. (3). In this formulation, the movement of the inter-
face may only occur as a result of heat flow across the interface.
This restriction has implications in the situation of fission heating
in which heat is generated throughout the volume of the material.
In this case, heat is no longer required to cross the boundary and
will therefore not advance the melting front despite potentially
raising the temperature above the melting point. Since the Phase
Field method does not solve for interface movement explicitly, it
does not suffer from this limitation.
Fig. 7. Example simulation of an unirradiated, naturally-enriched CANDU fuel element
profile for Plin = 84 kW/m.
The potential for the Phase Field model to accommodate volu-
metric heating is further demonstrated in this work by considering
a volumetric source term for nuclear fission heating in an unirradi-
ated, naturally-enriched cylindrical nuclear fuel element (of radius
a = 6.075 mm), where:

_QðrÞ ¼ Plin

pa2

ja
2I1ðjaÞ

	 

I0ðjrÞ ð21Þ

This expression accounts for neutron flux depression effects in the
element in the radial direction r, where Plin is the linear power,
j = 0.9 cm�1 is the inverse neutron diffusion length and I0,1 are
the modified Bessel functions. A constant fuel pellet surface tem-
perature of 700 K is assumed as a Dirchlet boundary condition at
r = a. For the simulation, the pellet is assumed to start from a uni-
form temperature equal to the surface temperature. Fig. 7 shows
the results of this simulation for a series of linear powers. This
analysis shows that centerline melting is first expected at approx-
imately 84 kW/m. For this simulation, no change in the model
implementation is required beyond a change in the boundary con-
ditions, the addition of a volumetric heat source and a conversion
to cylindrical coordinates. Since the material properties and gov-
erning differential equations are unchanged in this analysis, this
result demonstrates the versatility of the Phase Field model for
use in experimental design and analysis (i.e., to deduce material
properties) and for application in safety and fuel performance
analysis.

The Phase Field approach easily includes nucleation and und-
ercooling neither of which has been included in the Stefan formula-
tion. While not important for modeling this experiment, this may
become important in volumetric heating and cases where constitu-
tional undercooling may be introduced as a consequence of treating
operating at various linear powers. Inset shows the progression of the temperature
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non-stoichiometric fuel, UO2+x, where the melt hyperstoichiometry
exceeds that of the solid at the interface.

7. Conclusions

The current results demonstrate that both the Stefan and Phase
Field concepts are sound and mutually consistent with the exper-
imental laser flash results. The agreement between the one and
two dimensional Phase Field model indicates that a one dimen-
sional analysis is sufficiently accurate. Both the Stefan formulation
and the Phase Field model have been shown to be capable of sim-
ulating non-congruent phase transitions in other work [16,22].
However as previously discussed and demonstrated, the Phase
Field model is better suited to describe centerline melting phe-
nomenon in operating fuel elements with a volumetric (fission)
heat source in nuclear fuel.

The Phase Field model has been selected for the advancement of
this work to include non-stoichiometric UO2+x that can occur if the
fuel elements was to become defected during operation. The case
of UO2+x is complicated by the change in melting temperature with
stoichiometry as well as varying material properties. However the
success of the current work, and particularly the robustness of the
Phase Field model, suggest that this model may be a more appro-
priate and general tool for such analysis.
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Appendix. Phase Field derivation

The physical quantities and governing equations of the Phase
Field model are derived and evaluated in this appendix.

Derivation of the general equation

To determine the total entropy S in a volume V, a general entro-
py functional is proposed in the form [32,33]

S ¼
Z

V
sðu;uÞ �

e2
u

2
j~ruj2

 !
dV ð22Þ

where s(u,u) is the local entropy density given as a function of the
internal energy density u and the Phase Field variable u. The con-
stant eu characterizes the energy effect of a gradient in u. Using
dot notation to indicate time derivatives, the rate of change of the
entropy may be derived:

dS
dt
¼
Z

V

os
ou

_uþ os
ou

_u� e2
u
~ru~r _u

� �
dV ð23Þ

The First Law of thermodynamics is applied via

_u ¼ �~r �~qþ _Q ð24Þ

where ~q is the heat flux and _Q is a volumetric heat source such as
fission. This equation can be substituted into Eq. (23) and rear-
ranged through Green’s Theorem and the Divergence Theorem to
yield:
dS
dt|{z}

Entropy change

¼
Z

V

~r os
ou
�~qþ os

ou
þ e2

u
~r2u

	 

_u

� �
dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Entropy produced by irreversible processes

�
Z

A

os
ou
�~qþ e2

u _u~ru

� �
� n̂ dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Flux across boundary

þ
Z

V

os
ou
� _Q

� �
dV|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Volumetric generation

ð25Þ

where A is the boundary of V and the last term accounts for entropy
introduced into the system that is not a result of a flux across the
boundary or an internal irreversible process.

As the entropy produced in a system is always positive for a real
system and since Eq. (25) is valid for an arbitrary volume then:

~r os
ou
�~qþ os

ou
þ e2

u
~r2u

	 

_u > 0 ð26Þ

This inequality may be ensured by assuming:

~q ¼ Mu �~r
os
ou

ð27Þ

_u ¼ Mu
os
ou
þ e2

u
~r2u

� �
ð28Þ

where Mu and Mu are always positive and couple the driving forces
to the resulting fluxes [17]. The mobility of the internal energy, Mu,
is phenomenological and will be shown to be related to the well-
known Fourier heat flux. The term Mu is related to attachment
kinetics and determines the rate of phase change.

The solution of the Phase Field model requires a solution of Eqs.
(24) and (28) subject to the flux expression in Eq. (27). These two
equations are coupled by the expression of the entropy density
function s(u,u).

State functions

The general energy and entropy density equations for a pure
material may be written respectively as

uðT;uÞ ¼ ½1� pðuÞ�uSðTÞ þ pðuÞuLðTÞ þ KuðuÞ ð29Þ
sðT;uÞ ¼ ½1� pðuÞ�sSðTÞ þ pðuÞsLðTÞ þ KsðuÞ ð30Þ

where p(u) is an interpolation function of the phase parameter such
that pðu ¼ 0Þ ¼ 0 and pðu ¼ 1Þ ¼ 1. The functions Ku(u) and Ks(u)
describe the effects of a mixture of two phases in the form of surface
energy and entropy of mixing for a solution of solid and liquid
phases. Assuming that the number of separate phase regions (such
as solid nuclei in a liquid phase) is not large, Ks(u) ffi 0. The form of
Ku(u) is arbitrary; it does not change the sharp interface limit and
will be discussed further below.

Thermodynamic driving forces

The internal energy flux given in Eq. (27) may now be expanded
by noting the definition of thermodynamic temperature [34], lead-
ing to the recovery of the Fourier conductive heat flux:

os
ou
¼ 1

T
ð31Þ

~q ¼ Mu �~r
1
T
¼ �Mu

T2
~rT

¼ �k �~rT ð32Þ

where the thermal conductivity has been introduced as k = Mu/T2.
The rate of change of internal energy is assumed to be approxi-
mately equal to the rate of change of the enthalpy, _h, due to the
small thermal expansion of condensed phases. Using (0) to denote
differentiation with respect to u:

_hðT;uÞ ffi _uðT;uÞ
¼ qCp

_T þ p0ðuÞDHfus þ K 0uðuÞ
� 


� _uþ _Q
ð33Þ



Fig. 8. Embryo Gibbs energy as a function of the number of atoms in an embryo,
showing the critical value DGo

n.
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The generalized heat conduction, Eq. (8) may be derived:

_u ¼ �~r �~qþ _Q

qCp
_T ¼ ~r � k~rT � ½p0ðuÞDHfus þ K 0uðuÞ� � _uþ _Q

ð34Þ

where DHfus is the enthalpy of fusion.
In expanding Eq. (28), the osðu;uÞ

ou term requires the notion of the
total derivative [35] in order to make use of Eqs. (29) and (30).

osðu;uÞ
ou

¼ Dsðu;uÞ
Du

� os
ou

ouðT;uÞ
ou

¼ osðT;uÞ
ou

� 1
T

ouðT;uÞ
ou

¼ p0ðsL � sSÞ �
1
T
½p0 � ðuL � uSÞ þ K 0u�

¼ �1
T
½p0 � ðfL � fSÞ þ K 0u�

ð35Þ

where f = u � Ts is the Helmholtz energy density. Using Eq. (35) and
assuming the approximate equality between internal energy and
enthalpy again, DGfus(T) ffi fL(T) � fS(T), Eq. (28) becomes:

_u ¼ �Mu
1
T
½p0ðuÞ � DGfusðTÞ þ K 0uðuÞ� � e2

u
~r2u

� �
ð36Þ

where DGfus is the Gibbs energy of fusion and eu is the coefficient of
the gradient term.

Nucleation

The onset of crystallization within a liquid requires a critical
number of atoms to surmount a potential barrier and assemble
in a specific configuration as a result of random thermofluctuations
[36]. Nucleation may more properly be simulated in compliance
with statistical mechanics by Langevin-noise terms [37]; however,
due to the relatively large scale of this application, elementary
nucleation theory is instead inserted ad hoc into Eq. (36).

The Gibbs energy DGn associated with the formation of a spher-
ical embryo of n atoms, in the solid configuration, is comprised of
the bulk and boundary energies:

DGn ¼ VDgfus þ Ar ð37Þ

where A is the area bounding a volume V, r is the surface energy and
Dgfus is the Gibbs energy change per unit volume [38]. The volumet-
ric term (proportional to the cube of the embryo radius) is negative
below the melting point and increases in magnitude monotonically
whereas the surface energy (proportional to the square of the em-
bryo radius) is always positive. For a small embryo, the surface en-
ergy increase will outweigh the volumetric decrease, preventing the
embryo’s growth. As depicted in Fig. 8, there is a maximum in DGn

at which point the addition of molecules will reduce the total en-
ergy of the cluster and the embryo will begin to grow.

The maximum, DGo
n for a spherical cluster is given as [39]:

DGo
n ¼

16p
3

r3

Dg2

� �
fh ð38Þ

where fh is the heterogeneous nucleation factor which depends on
the wetting angle. This factor accounts for the reduction in nucle-
ation activation energy by impurities, defects or foreign solids and
greatly reduces the degree of undercooling during solidification.

Assuming an equilibrium concentration of clusters and basic
growth kinetics, an Arrhenius type expression (with activation en-
ergy DGo

n) for the nucleation rate may be derived:

I ¼ Io exp �DGo
n

kBT

� �
ð39Þ

where Io is related to attachment kinetics and kB is Boltzmann’s
constant.
The onset of liquid growth is assumed to behave in much the
same way, except that the kinetics are much faster due removal
of the restriction that atoms have to be placed at specific lattice
sites. Thus initial solid and liquid growth is incorporated into the
Phase Field model by the addition of a source term into Eq. (36)
of the form given in Eq. (16).

Determination of Phase Field constants

The choice of the interpolation function p(u) and the excess
interfacial energy Ku(u) are now investigated. The function p(u)
necessarily has properties that pðu ¼ 0Þ ¼ 0 and pðu ¼ 1Þ ¼ 1.
The function Ku(u) has the form of a double well potential having
minima at u ¼ 0;1 and a maximum at u ¼ 0:5. The height of this
potential barrier is proportional to a constant W which will be
shown to relate to the surface energy later.

The Gibbs energy expression may be derived from Eqs. (29) and
(30):

GðT;uÞ ¼ GSðTÞ þ pðuÞ � DGfusðTÞ þ KuðuÞ ð40Þ

At the melting temperature GS = GL. Furthermore, in order to
make the solid and liquid phase stable, G(T,u) must have local
equilibriums at u ¼ 0;1 for all temperatures. Applied to Eq. (40)
these constraints impart the following assertions on Ku(u) and
p(u) [40]:

Kuð0Þ ¼ Kuð1Þ ¼ 0
½K 0uðuÞ þ p0ðuÞ � DGfus�u¼0;1 ¼ 0

½K 00uðuÞ þ p00ðuÞ � DGfus�u¼0;1 > 0

ð41Þ

Within the confines of these constraints, the actual form of
these equations is arbitrary; the choice does not affect the sharp
interface limit. For this implementation, a common choice [16] is
employed as plotted in Figs. 9 and 10.

pðuÞ ¼ u3½6u2 � 15uþ 10� ð42Þ
KuðuÞ ¼Wu2½1� u�2 ð43Þ

It is now possible to use the sharp interface model to determine
the constants W, eu and Mu and infer their meaning and physical
relevance. To proceed, consider the case of an equilibrium solution
in one dimension (planar interface) at the melting temperature Tm.
The heat balance equation is satisfied and Eq. (9) becomes:

0 ¼ �Mu
1

Tm
½p0ðuÞ � DGfusðTmÞ þ K 0uðuÞ� � e2

u
~r2u

� �

e2
u
~r2u ¼ 2W

Tm
½uðu� 1Þð2u� 1Þ�

ð44Þ



Fig. 11. Steady state solution for u. The input parameter d determines the width of
the resulting interface.

Fig. 12. Excess energy of material in the interface for the steady state solution.

Fig. 9. The interpolation function p(u).

Fig. 10. The double well potential function Ku(u).
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for which a solution exists:

uðxÞ ¼ 1
2

1þ tanh
x

2d

� �h i
ð45Þ

where

d ¼ eu

ffiffiffiffiffiffiffiffiffi
Tm

2W

r
ð46Þ

The constant d can be interpreted as a measure of interface
thickness as is shown graphically in Fig. 11. This is a useful param-
eter to control since the mesh size for the computational domain
must be of comparable size in order to adequately resolve the
interface.

Assuming that the internal energy functional does not have any
gradient components and using Eq. (22), the Gibbs energy func-
tional may be written as:

G ¼
Z

V
gðT;uÞ þ T

e2
u

2
j~ruj2

 !
dV ð47Þ

where g is the Gibbs energy density as a function of temperature
and phase.

The excess energy term associated with the boundary, the sur-
face energy, is given by the gradient term above. A plot of this en-
ergy over the steady state solution in Eq. (45) is shown in Fig. 12.
This can also be integrated to obtain an expression for the surface
energy:

r ¼ eu

6

ffiffiffiffiffiffiffiffiffiffiffi
WTm

2

r
ð48Þ

Eqs. 46 and 48 can be rearranged to determine expressions for
W and eu as presented in Eqs. (13) and (14).

The mobility of u, corresponding to the rate of phase growth, is
related to the interface kinetics. The relationship between the
accuracy of the solution and the interface width d has been studied
and an expression for Mu that is accurate to second order in d was
derived for the case of equal thermal conductivities in the solid and
liquid phase at the melting point, and a small interface thickness
[41]. Since the thermal conductivities for the two phases are close
in value, the assumption of a constant thermal conductivity in the
model is reasonable:

1
Mu
¼ 6dDHfus

T2
m

1
l
þ A

d � DHfus

k

� �	 

ð49Þ

where l is related to the surface attachment kinetics and the con-
stant A � 5/6. Kinetic effects can be ignored by setting l =1, which
reduces Eq. (49) to Eq. (15) [16].
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